Homogeneous Ruthenium Precatalyst for Suzuki-Miyaura Coupling Reaction

Motoi Kawatsura,* Kosuke Kamesaki, Mitsuaki Yamamoto, Shuichi Hayase, and Toshiyuki Itoh*

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama, Tottori 680-8552

(Received July 9, 2010; CL-100620; E-mail: kawatsur@chem.tottori-u.ac.jp)

 \frown

 $Ru(cod)(2-methylallyl)_2$ was found to catalyze the Suzuki-Miyaura cross-coupling reaction of aryl bromides and aryl iodides with arylboronic acids. The reaction was catalyzed by $10 mol \% Ru(cod)(2-methylallyl)_2$ at $60 \,^{\circ}C$, and afforded the biaryls in moderate to good yields.

The Suzuki-Miyaura cross-coupling reaction is one of the most versatile synthetic methods for the construction of carboncarbon bonds and has been used for the synthesis of biaryls.¹ Originally, the reaction used a palladium catalyst, and several highly active palladium-ligand catalysts have been developed in the last decade.² Alternatively, the cross-coupling of aryl halides with arylboronic acids has also been accomplished using other metal catalysts such as nickel,³ copper,⁴ platinum,⁵ or rhodium.⁶ Ruthenium is also known to catalyze the coupling reaction, but its use is limited to heterogeneous systems.^{7,8} For example, Rothenberg reported in 2002 that ruthenium nanocolloid catalyzed the Suzuki-Miyaura cross-coupling.7 Two years later, Chang et al. succeeded in demonstrating that supported ruthenium on alumina (Ru/Al₂O₃) effectively catalyzed the coupling reaction, and they also mentioned that a homogeneous ruthenium precursor is much less effective.8 However, we understand they suggested that the homogeneous ruthenium catalyst system is potentially capable of promoting crosscoupling, therefore, we initiated a study to realize a practical homogeneous ruthenium-catalyzed Suzuki-Miyaura cross-coupling reaction. We now report the homogeneous ruthenium precatalyst [Ru(cod)(2-methylallyl)₂] catalyzed Suzuki-Miyaura reaction of aryl iodides and bromides with arylboronic acid.

As shown in Table 1, a series of commercially available ruthenium precursors were screened for the reaction of 4-iodotoluene (1a) with phenylboronic acid (2a). The reaction using RuCl₃, Ru₃(CO)₁₂, and [RuCl₂(*p*-cymene)]₂ ([Ru-1]) resulted in less than 5% yield (Entries 1–3). The reaction with RuCl₂(cod) gave the desired biaryl compound in moderate yield (Entry 4). To our delight, Ru(cod)(2-methylallyl)₂ ([Ru-2]) effectively catalyzed the reaction at 60 °C in THF/H₂O solvent, and a 71% yield of **3a** was obtained (Entry 5). Optimization of the reaction conditions for the Ru(cod)(2-methylallyl)₂ catalyzed reaction of **1a** with **2a** revealed that the cyclopentyl methyl ether (CPME) is the best solvent for the reaction (Entries 5–7). The choice of base is also important in order to realize a high yield, and we concluded that NaO'Bu or CsOH is a promising base to produce a good yield (Entries 7–10).

The coupling reactions of several aryl iodides 1a-1k with arylboronic acids 2a-2e were examined using an optimized catalytic system (Scheme 1).⁹ Typically, the reaction was carried out as follows: 10 mol % Ru(cod)(2-methylallyl)₂, NaOt-Bu or CsOH (2.5 equiv), the aryl iodide and arylboronic acid (3 equiv) were mixed in CPME/H₂O (10/1) at 60 °C for 12 h. The results are summarized in Table 2. Aryl iodides **1b–1d** were coupled Table 1. Optimization of the ruthenium-catalyzed Suzuki–Miyaura coupling of 1a with $2a^{\rm a}$

[Bul

 \frown

$Me \longrightarrow I + PhB(OH)_2 \xrightarrow{I, Hoj} Me \longrightarrow Ph$							
1a 2a 3a							
Entry	[Ru] ^b	Base	Solvent	Yield /% ^c			
1	RuCl ₃ •xH ₂ O	КОН	THF/H ₂ O (10/1)	0			
2	Ru ₃ (CO) ₁₂	КОН	THF/H ₂ O (10/1)	0			
3	[Ru-1]	КОН	THF/H ₂ O (10/1)	5			
4	$[\operatorname{RuCl}_2(\operatorname{cod})]_n$	КОН	THF/H ₂ O (10/1)	56			
5	[Ru-2]	КОН	THF/H ₂ O (10/1)	71			
6	[Ru-2]	КОН	dioxane/H ₂ O $(10/1)$	11			
7	[Ru-2]	КОН	CPME/H ₂ O (10/1)	79			
8	[Ru-2]	NaOH	CPME/H ₂ O (10/1)	52			
9	[Ru-2]	CsOH	CPME/H ₂ O (10/1)	86			
10	[Ru-2]	NaO ^t Bu	CPME/H ₂ O (10/1)	90			

^aAll reactions were carried out with **1a** (0.35 mmol), **2a** (1.06 mmol), ruthenium (0.035 mmol for RuCl₃, RuCl₂(cod), and [Ru-2]. 0.018 mmol for [Ru-1]. 0.012 mmol for Ru₃-(CO)₁₂), and base (0.88 mmol) in solvent (2.0 mL) under nitrogen at 60 °C for 12 h. ^b[Ru-1]: [RuCl₂(*p*-cymeme)]₂. [Ru-2]: Ru(cod)(2-methylallyl)₂. ^cDetermined by HPLC analysis.

Scheme 1.

with phenylboronic acid (2a) to give the corresponding biaryls in good yields (88–95% isolated yield) (Entries 1–5). For the reaction of 1b and 1c, NaOt-Bu produced a better result than CsOH. On the other hand, CsOH realized higher yields than NaOt-Bu for the reactions of 1e–1h, which contained electrondonating or electron-withdrawing groups at the *para*-position

Table 2.Ru(cod)(2-methylallyl)_2-catalyzedSuzuki-Miyauracoupling of aryl iodides $1a-1k^a$

Entry	R	Ar	Base	Yield/% ^{b,c}
1	Н (1b)	Ph (2a)	NaO ^t Bu	89
2	Н (1b)	Ph (2a)	CsOH	86
3	4- <i>t</i> -Bu (1c)	Ph (2a)	NaO ^t Bu	95
4	4- <i>t</i> -Bu (1c)	Ph (2a)	CsOH	88
5	4-Ph (1d)	Ph (2a)	NaO ^t Bu	88
6	4-OMe (1e)	Ph (2a)	NaO ^t Bu	68
7	4-OMe (1e)	Ph (2a)	CsOH	75 (82) ^d
8	4-F (1f)	Ph (2a)	NaO ^t Bu	23
9	4-F (1f)	Ph (2a)	CsOH	60
10	4-Br (1g)	Ph (2a)	CsOH	70
11	4-CO ₂ Me (1h)	Ph (2a)	CsOH	53
12	2-Me (1i)	Ph (2a)	NaO ^t Bu	44
13	2-OMe (1j)	Ph (2a)	NaO ^t Bu	72
14	4-Ac (1k)	Ph (2a)	NaO ^t Bu	(8) ^d
15	4-Ac (1k)	Ph (2a)	CsOH	(8) ^d
16	4-Me (1a)	4-MeOC ₆ H ₄ (2b)	NaO ^t Bu	52
17	4-Me (1a)	4-FC ₆ H ₄ (2c)	NaO ^t Bu	55
18	4-Me (1a)	$4-PhC_{6}H_{4}$ (2d)	NaO ^t Bu	54
19	4-Me (1a)	4-MeC ₆ H ₄ (2e)	NaO ^t Bu	59

^aReaction conditions: **1** (0.35 mmol), **2** (1.06 mmol), [Ru-2] (0.035 mmol), and base (0.88 mmol) in CPME/H₂O (10/1) (2.0 mL) under nitrogen at 60 °C for 12 h. ^bIsolated yield by silica gel column chromatography. ^cAn average of at least two runs. ^dHPLC yields in parentheses.

(Entries 6–11). For example, when NaOt-Bu was used for the reaction of 1-fluoro-4-iodobenzene (**1f**), a biaryl was produced in only 23% yield, but when using CsOH, the yield increased to 60% (Entries 8 and 9). Furthermore, the reaction of 1-bromo-4-iodobenzene (**1g**) proceeded with perfect chemoselectivity, and we observed no trace amounts of *p*-terphenyl and 4-iodobiphenyl (Entry 10). The sterically hindered *ortho*-substituted aryl iodides, such as **1i** and **1j**, also produced the desired biaryls by the combination of Ru(cod)(2-methylallyl)₂ and NaOt-Bu (Entries 12 and 13). Unfortunately, the reactions of **1k** with **2a** resulted in very poor yields (Entries 14 and 15). We further examined the reactions with other arylboronic acids. Several *para*-substituted arylboronic acids **2b–2e** reacted with **1a** under the optimized reaction conditions, producing the desired products in moderate isolated yields (52–59%) (Entries 16–19).

We next attempted the Ru(cod)(2-methylallyl)₂ catalyzed Suzuki–Miyaura coupling of aryl bromides **4a–4d**. The results are summarized in Table 3. After a small modification¹⁰ of the reaction conditions, the desired coupling reactions of the aryl bromides **4a–4d** with arylboronic acids **2a** and **2b** were effectively promoted by the Ru(cod)(2-methylallyl)₂ at 60 °C, and the corresponding biaryls were obtained in good yield.

In conclusion, we succeeded in demonstrating the Ru-(cod)(2-methylallyl)₂-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl iodides and aryl bromides.

Table 3. Ruthenium-catalyzed Suzuki–Miyaura coupling of aryl bromides $4a-4d^a$

Entry	R	2	Base	Yield /% ^{b,c}
1	Н (4а)	2a	NaO ^t Bu	73
2	4-Me (4b)	2a	NaO ^t Bu	88
3	4-Cl (4c)	2a	CsOH	79
4	4-OMe (4d)	2a	CsOH	86
5	4-Me (4b)	2b	NaO ^t Bu	64

^aReaction conditions: **1** (0.35 mmol), **2** (1.06 mmol), [Ru-2] (0.035 mmol), and base (1.05 mmol) in CPME/H₂O (10/1) (2.0 mL) under nitrogen at 60 °C for 12 h. ^bIsolated yield by silica gel column chromatography. ^cAn average of at least two runs.

References and Notes

- a) A. Suzuki, *Pure Appl. Chem.* 1991, 63, 419. b) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, 95, 2457. c) A. Suzuki, *J. Organomet. Chem.* 1999, 576, 147. d) N. Miyaura, *Top. Curr. Chem.* 2002, 219, 11. e) G. A. Molander, B. Canturk, *Angew. Chem., Int. Ed.* 2009, 48, 9240, and references cited therein.
- 2 For selected papers on the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, see: a) A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020. b) J. P. Stambuli, R. Kuwano, J. F. Hartwig, Angew. Chem., Int. Ed. 2002, 41, 4746. c) K. W. Anderson, S. L. Buchwald, Angew. Chem., Int. Ed. 2005, 44, 6173. d) C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem., Int. Ed. 2008, 47, 8059, and references cited therein.
- 3 Recent examples of the nickel-catalyzed Suzuki-Miyaura cross-coupling reaction, see: a) K. W. Quasdorf, M. Riener, K. V. Petrova, N. K. Garg, J. Am. Chem. Soc. 2009, 131, 17748. b) A. Antoft-Finch, T. Blackburn, V. Snieckus, J. Am. Chem. Soc. 2009, 131, 17750. c) D.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu, Z.-J. Shi, Org. Lett. 2009, 11, 3374. d) K. Inamoto, J. Kuroda, E. Kwon, K. Hiroya, T. Doi, J. Organomet. Chem. 2009, 694, 389. e) L. Xu, B.-J. Li, Z.-H. Wu, X.-Y. Lu, B.-T. Guan, B.-Q. Wang, K.-Q. Zhao, Z.-J. Shi, Org. Lett. 2010, 12, 884.
- 4 a) J.-H. Li, D.-P. Wang, *Eur. J. Org. Chem.* 2006, 2063. b) J. Mao, J. Guo, F. Fang, S.-J. Ji, *Tetrahedron* 2008, 64, 3905.
- 5 a) R. B. Bedford, S. L. Hazelwood, D. A. Albisson, *Organometallics* 2002, 21, 2599. b) C. H. Oh, Y. M. Lim, C. H. You, *Tetrahedron Lett.* 2002, 43, 4645.
- 6 L. Zhang, J. Wu, Adv. Synth. Catal. 2008, 350, 2409.
- 7 a) M. B. Thathagar, J. Beckers, G. Rothenberg, *J. Am. Chem. Soc.* 2002, *124*, 11858. b) M. B. Thathagar, J. Beckers, G. Rothenberg, *Adv. Synth. Catal.* 2003, *345*, 979.
- 8 Y. Na, S. Park, S. B. Han, H. Han, S. Ko, S. Chang, J. Am. Chem. Soc. 2004, 126, 250.
- 9 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett.
- 10 The amount of base was changed from 2.5 equiv to 3.0 equiv.