Homogeneous Ruthenium Precatalyst for Suzuki–Miyaura Coupling Reaction

Motoi Kawatsura,* Kosuke Kamesaki, Mitsuaki Yamamoto, Shuichi Hayase, and Toshiyuki Itoh* Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama, Tottori 680-8552

(Received July 9, 2010; CL-100620; E-mail: kawatsur@chem.tottori-u.ac.jp)

 $Ru(cod)(2-methylallyl)$ ₂ was found to catalyze the Suzuki-Miyaura cross-coupling reaction of aryl bromides and aryl iodides with arylboronic acids. The reaction was catalyzed by 10 mol % Ru(cod)(2-methylallyl)₂ at 60 °C, and afforded the biaryls in moderate to good yields.

The Suzuki-Miyaura cross-coupling reaction is one of the most versatile synthetic methods for the construction of carboncarbon bonds and has been used for the synthesis of biaryls.¹ Originally, the reaction used a palladium catalyst, and several highly active palladium-ligand catalysts have been developed in the last decade. $²$ Alternatively, the cross-coupling of aryl halides</sup> with arylboronic acids has also been accomplished using other metal catalysts such as nickel,³ copper,⁴ platinum,⁵ or rhodium.⁶ Ruthenium is also known to catalyze the coupling reaction, but its use is limited to heterogeneous systems.7,8 For example, Rothenberg reported in 2002 that ruthenium nanocolloid catalyzed the Suzuki-Miyaura cross-coupling.⁷ Two years later, Chang et al. succeeded in demonstrating that supported ruthenium on alumina (Ru/Al_2O_3) effectively catalyzed the coupling reaction, and they also mentioned that a homogeneous ruthenium precursor is much less effective.⁸ However, we understand they suggested that the homogeneous ruthenium catalyst system is potentially capable of promoting crosscoupling, therefore, we initiated a study to realize a practical homogeneous ruthenium-catalyzed Suzuki-Miyaura cross-coupling reaction. We now report the homogeneous ruthenium precatalyst [Ru(cod)(2-methylallyl)₂] catalyzed Suzuki-Miyaura reaction of aryl iodides and bromides with arylboronic acid.

As shown in Table 1, a series of commercially available ruthenium precursors were screened for the reaction of 4 iodotoluene (1a) with phenylboronic acid (2a). The reaction using RuCl₃, Ru₃(CO)₁₂, and $[RuCl₂(p$ -cymene)]₂ ($[Ru-1]$) resulted in less than 5% yield (Entries $1-3$). The reaction with $RuCl₂(cod)$ gave the desired biaryl compound in moderate yield (Entry 4). To our delight, $Ru(cod)(2-methylally1)_2$ ([Ru-2]) effectively catalyzed the reaction at 60°C in THF/H₂O solvent, and a 71% yield of 3a was obtained (Entry 5). Optimization of the reaction conditions for the $Ru(cod)(2-methylally1)$ ₂ catalyzed reaction of 1a with 2a revealed that the cyclopentyl methyl ether $(CPME)$ is the best solvent for the reaction (Entries 5–7). The choice of base is also important in order to realize a high yield, and we concluded that NaO'Bu or CsOH is a promising base to produce a good yield (Entries $7-10$).

The coupling reactions of several aryl iodides $1a-1k$ with arylboronic acids 2a-2e were examined using an optimized catalytic system (Scheme 1).9 Typically, the reaction was carried out as follows: $10 \text{ mol } \% \text{ Ru(cod)}(2-\text{methylallyl})_2$, NaOt-Bu or CsOH (2.5 equiv), the aryl iodide and arylboronic acid (3 equiv) were mixed in CPME/H₂O (10/1) at 60 °C for 12 h. The results are summarized in Table 2. Aryl iodides 1b-1d were coupled

Table 1. Optimization of the ruthenium-catalyzed Suzuki-Miyaura coupling of 1a with 2a^a

Me	$+$ PhB(OH) ₂	[Ru]	Me	Ph
	1a 2a	base	3a	
Entry	$[Ru]$ ^b	Base	Solvent	Yield $/$ %°
$\mathbf{1}$	$RuCl3•xH2O$	KOH	THF/H_2O (10/1)	0
2	Ru ₃ (CO) ₁₂	KOH	THF/H ₂ O (10/1)	0
3	$[Ru-1]$	KOH	THF/H ₂ O (10/1)	5
$\overline{4}$	$\left[\text{RuCl}_2(\text{cod})\right]_n$	KOH	THF/H ₂ O (10/1)	56
5	$[Ru-2]$	KOH	THF/H ₂ O (10/1)	71
6	$[Ru-2]$	KOH	dioxane/H ₂ O (10/1)	11
7	$[Ru-2]$	KOH	CPME/H ₂ O (10/1)	79
8	$[Ru-2]$	NaOH	CPME/H ₂ O (10/1)	52
9	$[Ru-2]$	CsOH	CPME/H ₂ O (10/1)	86
10	$[Ru-2]$	NaO'Bu	CPME/H ₂ O (10/1)	90

^aAll reactions were carried out with 1a (0.35 mmol), 2a (1.06 mmol) , ruthenium $(0.035 \text{ mmol}$ for RuCl₃, RuCl₂(cod), and [Ru-2]. 0.018 mmol for [Ru-1]. 0.012 mmol for Ru₃- $(CO)_{12}$), and base (0.88 mmol) in solvent (2.0 mL) under mitrogen at 60° C for 12 h. b [Ru-1]: [RuCl₂(*p*-cymeme)]₂. [Ru-2]: Ru(cod)(2-methylallyl)₂. ^cDetermined by HPLC analysis.

Scheme 1.

with phenylboronic acid (2a) to give the corresponding biaryls in good yields $(88-95\%$ isolated yield) (Entries 1-5). For the reaction of 1b and 1c, NaOt-Bu produced a better result than CsOH. On the other hand, CsOH realized higher yields than NaOt-Bu for the reactions of $1e-1h$, which contained electrondonating or electron-withdrawing groups at the para-position

Table 2. Ru(cod)(2-methylallyl)₂-catalyzed Suzuki-Miyaura coupling of aryl iodides $1a-1k^a$

Entry R		Ar	Base	Yield/ $\sqrt{\%}^{b,c}$
1	H(1b)	Ph $(2a)$	NaO ^t Bu	89
2	H(1b)	Ph $(2a)$	CsOH	86
3	$4-t-Bu(1c)$	Ph $(2a)$	NaO ^t Bu	95
4	4- <i>t</i> -Bu $(1c)$	Ph $(2a)$	CsOH	88
5	4-Ph $(1d)$	Ph $(2a)$	NaO ^t Bu	88
6	4 -OMe $(1e)$	Ph $(2a)$	NaO ^t Bu	68
7	4 -OMe $(1e)$	Ph $(2a)$	CsoH	$75(82)^d$
8	$4-F(1f)$	Ph $(2a)$	NaO ^t Bu	23
9	4-F (1f)	Ph $(2a)$	CsOH	60
10	$4-Br(1g)$	Ph $(2a)$	CsOH	70
11	4 -CO ₂ Me $(1h)$	Ph $(2a)$	CsOH	53
12	$2-Me(1i)$	Ph $(2a)$	NaO ^t Bu	44
13	2 -OMe $(1j)$	Ph $(2a)$	NaO ^t Bu	72
14	$4-Ac(1k)$	Ph $(2a)$	NaO ^t Bu	$(8)^d$
15	$4-Ac(1k)$	Ph $(2a)$	CsOH	$(8)^d$
16	4-Me $(1a)$	$4-MeOC6H4 (2b)$	NaO ^t Bu	52
17	4 -Me $(1a)$	$4-FC_6H_4(2c)$	NaO ^t Bu	55
18	4-Me $(1a)$	4-PhC ₆ H ₄ (2d)	NaO ^t Bu	54
19	$4-Me(1a)$	4-Me C_6H_4 (2e)	NaO ^t Bu	59

a Reaction conditions: 1 (0.35 mmol), 2 (1.06 mmol), [Ru-2] (0.035 mmol) , and base (0.88 mmol) in CPME/H₂O $(10/1)$ (2.0 mL) under nitrogen at 60 °C for 12 h. ^bIsolated yield by silica gel column chromatography. ^cAn average of at least two runs. ^dHPLC yields in parentheses.

(Entries $6-11$). For example, when NaOt-Bu was used for the reaction of 1-fluoro-4-iodobenzene (1f), a biaryl was produced in only 23% yield, but when using CsOH, the yield increased to 60% (Entries 8 and 9). Furthermore, the reaction of 1-bromo-4 iodobenzene (1g) proceeded with perfect chemoselectivity, and we observed no trace amounts of p-terphenyl and 4-iodobiphenyl (Entry 10). The sterically hindered ortho-substituted aryl iodides, such as 1i and 1j, also produced the desired biaryls by the combination of $Ru(cod)(2-methylallyl)$ ₂ and NaOt-Bu (Entries 12 and 13). Unfortunately, the reactions of 1k with 2a resulted in very poor yields (Entries 14 and 15). We further examined the reactions with other arylboronic acids. Several $para$ -substituted arylboronic acids $2b-2e$ reacted with 1a under the optimized reaction conditions, producing the desired products in moderate isolated yields $(52–59%)$ (Entries 16–19).

We next attempted the $Ru(cod)(2-methylally1)_2$ catalyzed Suzuki-Miyaura coupling of aryl bromides 4a–4d. The results are summarized in Table 3. After a small modification¹⁰ of the reaction conditions, the desired coupling reactions of the aryl bromides 4a-4d with arylboronic acids 2a and 2b were effectively promoted by the Ru(cod)(2-methylallyl)₂ at 60 °C, and the corresponding biaryls were obtained in good yield.

In conclusion, we succeeded in demonstrating the Ru- $(cod)(2-methylallyl)₂ -catalyzed Suzuki-Miyaura cross-coupling$ reaction of aryl iodides and aryl bromides.

Table 3. Ruthenium-catalyzed Suzuki-Miyaura coupling of aryl bromides $4a-4d^a$

Entry	R	2	Base	Yield $/$ % ^{b,c}
	H(4a)	2a	NaO ^t Bu	73
\overline{c}	$4-Me(4b)$	2a	NaO ^t Bu	88
3	4-Cl $(4c)$	2a	CsOH	79
4	4 -OMe $(4d)$	2a	CsOH	86
	$4-Me(4b)$	2b	NaO'Bu	64

 a Reaction conditions: 1 (0.35 mmol), 2 (1.06 mmol), [Ru-2] (0.035 mmol) , and base (1.05 mmol) in CPME/H₂O $(10/1)$ (2.0 mL) under nitrogen at 60 °C for 12 h. ^bIsolated yield by silica gel column chromatography. ^cAn average of at least two runs.

References and Notes

- 1 a) A. Suzuki, [Pure App](http://dx.doi.org/10.1351/pac199163030419)l. Chem. 1991, 63, 419. b) N. Miyaura, A. Suzuki, [Chem. Rev.](http://dx.doi.org/10.1021/cr00039a007) 1995, 95, 2457. c) A. Suzuki, [J. Organomet. Chem.](http://dx.doi.org/10.1016/S0022-328X(98)01055-9) 1999, 576, 147. d) N. Miyaura, [Top. Curr. Chem.](http://dx.doi.org/10.1007/3-540-45313-X_2) 2002, 219, 11. e) G. A. Molander, B. Canturk, [Angew. Chem., Int. Ed.](http://dx.doi.org/10.1002/anie.200904306) 2009, 48, [9240,](http://dx.doi.org/10.1002/anie.200904306) and references cited therein.
- 2 For selected papers on the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, see: a) A. F. Littke, C. Dai, G. C. Fu, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0002058) 2000, 122, 4020. b) J. P. Stambuli, R. Kuwano, J. F. Hartwig, [Angew. Chem., Int. Ed.](http://dx.doi.org/10.1002/anie.200290036) 2002, 41[, 4746](http://dx.doi.org/10.1002/anie.200290036). c) K. W. Anderson, S. L. Buchwald, [Angew.](http://dx.doi.org/10.1002/anie.200502017) [Chem., Int. Ed.](http://dx.doi.org/10.1002/anie.200502017) 2005, 44, 6173. d) C. M. So, C. P. Lau, F. Y. Kwong, [Angew. Chem., Int. Ed.](http://dx.doi.org/10.1002/anie.200803193) 2008, 47, 8059, and references cited therein.
- 3 Recent examples of the nickel-catalyzed Suzuki-Miyaura cross-coupling reaction, see: a) K. W. Quasdorf, M. Riener, K. V. Petrova, N. K. Garg, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja906477r) 2009, 131, [17748.](http://dx.doi.org/10.1021/ja906477r) b) A. Antoft-Finch, T. Blackburn, V. Snieckus, [J. Am.](http://dx.doi.org/10.1021/ja907700e) [Chem. Soc.](http://dx.doi.org/10.1021/ja907700e) 2009, 131, 17750. c) D.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu, Z.-J. Shi, [Org. Lett.](http://dx.doi.org/10.1021/ol901217m) 2009, 11[, 3374.](http://dx.doi.org/10.1021/ol901217m) d) K. Inamoto, J. Kuroda, E. Kwon, K. Hiroya, T. Doi, [J. Organomet. Chem.](http://dx.doi.org/10.1016/j.jorganchem.2008.11.003) 2009, 694, 389. e) L. Xu, B.-J. Li, Z.-H. Wu, X.-Y. Lu, B.-T. Guan, B.-Q. Wang, K.-Q. Zhao, Z.-J. Shi, [Org. Lett.](http://dx.doi.org/10.1021/ol9029534) 2010, 12, 884.
- 4 a) J.-H. Li, D.-P. Wang, [Eur. J. Org. Chem.](http://dx.doi.org/10.1002/ejoc.200600026) 2006, 2063. b) J. Mao, J. Guo, F. Fang, S.-J. Ji, [Tetrahedron](http://dx.doi.org/10.1016/j.tet.2008.02.068) 2008, 64, 3905.
- 5 a) R. B. Bedford, S. L. Hazelwood, D. A. Albisson, [Organometa](http://dx.doi.org/10.1021/om0202524)llics 2002, 21, 2599. b) C. H. Oh, Y. M. Lim, C. H. You, [Tetrahedron Lett.](http://dx.doi.org/10.1016/S0040-4039(02)00863-8) 2002, 43, 4645.
- 6 L. Zhang, J. Wu, [Adv. Synth. Cata](http://dx.doi.org/10.1002/adsc.200800414)l. 2008, 350, 2409.
- 7 a) M. B. Thathagar, J. Beckers, G. Rothenberg, [J. Am. Chem.](http://dx.doi.org/10.1021/ja027716+) Soc. 2002, 124[, 11858](http://dx.doi.org/10.1021/ja027716+). b) M. B. Thathagar, J. Beckers, G. Rothenberg, [Adv. Synth. Cata](http://dx.doi.org/10.1002/adsc.200303045)l. 2003, 345, 979.
- 8 Y. Na, S. Park, S. B. Han, H. Han, S. Ko, S. Chang, [J. Am.](http://dx.doi.org/10.1021/ja038742q) [Chem. Soc.](http://dx.doi.org/10.1021/ja038742q) 2004, 126, 250.
- Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett.
- 10 The amount of base was changed from 2.5 equiv to 3.0 equiv.